Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo.

نویسندگان

  • Erica E Edison
  • Margaret E Brosnan
  • Christian Meyer
  • John T Brosnan
چکیده

A fraction of the body's creatine and creatine phosphate spontaneously degrades to creatinine, which is excreted by the kidneys. In humans, this amounts to approximately 1-2 g/day and demands a comparable rate of de novo creatine synthesis. This is a two-step process in which l-arginine:glycine amidinotransferase (AGAT) catalyzes the conversion of glycine and arginine to ornithine and guanidinoacetate (GAA); guanidinoacetate methyltransferase (GAMT) then catalyzes the S-adenosylmethionine-dependent methylation of GAA to creatine. AGAT is found in the kidney and GAMT in the liver, which implies an interorgan movement of GAA from the kidney to the liver. We studied the renal production of this metabolite in both rats and humans. In control rats, [GAA] was 5.9 microM in arterial plasma and 10.9 microM in renal venous plasma for a renal arteriovenous (A-V) difference of -5.0 microM. In the rat, infusion of arginine or citrulline markedly increased renal GAA production but infusion of glycine did not. Rats fed 0.4% creatine in their diet had decreased renal AGAT activity and mRNA, an arterial plasma [GAA] of 1.5 microM, and a decreased renal A-V difference for GAA of -0.9 microM. In humans, [GAA] was 2.4 microM in arterial plasma, with a renal A-V difference of -1.1 microM. These studies show, for the first time, that GAA is produced by both rat and human kidneys in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo.

Since creatinine excretion reflects a continuous loss of creatine and creatine phosphate, there is a need for creatine replacement, from the diet and/or by de novo synthesis. Creatine synthesis requires three amino acids, methionine, glycine, and arginine, and two enzymes, l-arginine:glycine amidinotransferase (AGAT), which produces guanidinoacetate acid (GAA), and guanidinoacetate methyltransf...

متن کامل

Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas.

Creatine is an important molecule involved in cellular energy metabolism. Creatine is spontaneously converted to creatinine at a rate of 1·7% per d; creatinine is lost in the urine. Creatine can be obtained from the diet or synthesised from endogenous amino acids via the enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT). The liver has high GAMT a...

متن کامل

Originalni Naučni Radovi Effect of Acute Renal Failure on Kidney Amidinotransferase Activity

L-Arginine-:glycine amidinotransferase (EC 2.1.4.1) catalyzes the transfer of an amidino group from arginine to glycine to form guanidinoacetate, precursor in creatine synthesis. The kidneys are major site of the creatine synthesis and primary target organs for mercury toxicity. In evaluation of molecular mechanisms of mercury chloride intoxication relating to creatine metabolism we have invest...

متن کامل

Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate.

S-adenosylmethionine, formed by the adenylation of methionine via S-adenosylmethionine synthase, is the methyl donor in virtually all known biological methylations. These methylation reactions produce a methylated substrate and S-adenosylhomocysteine, which is subsequently metabolized to homocysteine. The methylation of guanidinoacetate to form creatine consumes more methyl groups than all othe...

متن کامل

Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis.

The first inborn error of creatine metabolism (guanidinoacetate methyltransferase [GAMT] deficiency) has recently been recognized in an infant with progressive extrapyramidal movement disorder. The diagnosis was established by creatine deficiency in the brain as detected by in vivo magnetic resonance spectroscopy and by defective GAMT activity and two mutant GAMT alleles in a liver biopsy. Here...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 293 6  شماره 

صفحات  -

تاریخ انتشار 2007